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Consldered 1s a system of equatlions of magneto-gas-dynamics which describes
plane unsteady flow in a magnetic rield which is perpendicular to the plane
of the flow. For the relstion y = , there 1s given a transformation
which depends on one arbitrary tiuw¢?unct10n and which reduces the system of
equations of magheto-gas-dynamics to the same type of system but with a cer-
tain external forcée in the equation of motion.

To each solution of the new system of equations -there corresponds a solu-
tion of the original system.

As an example, there is considered an exact solution which describes the
compression of a plasma cylinder of finite conductivity.

1. The equations of magneto-gas-dynamics of a compressible liquid with
rfinite conductivity in a transverse magnetic field R{0,0,#) have the form([1]
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Here, ¢ 1s time, p pressure, p density; », y, are rectangular Car-
tesian coordinates, y and v  components of the veloecity vector; g 1s the
potential of the magnetic fleld, o the conductivity.

Let us introduce new variables and new functions with the aid of the rela-
tions
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If we make use of these relations, the system (1.1) can be written in the
following form in terms of the new functions and variables:
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The system of equations of magneto-gas-dynamics (1.1) has been transformed
into a similar system but with a spatial external force in the equations of
motion.

The system (1.1) describes the motion of a conducting gas in regions where
the motion is continuous., If the region of motion contains a surface of dis-
continuity, then the solutions of (1.1) on the two sides of thls surface must
be assoclated by means of definite relations. Under finite conductivity con-
ditlons the potential of the magnetic fleld must be contlnuous everywhere,
|H] = 0;; the tangentlal component of the potential of the electric field
[E] = 0 must be continuous at the passage through the surface of dlsconti-
nuity (the square brackets indicate that one takes the difference on both
sides of the surface of discontinuity).

Let p(¢,x,y) = O be the equation of the surface of a strong discontinu-
ity. On this surface the following conditions of dynamic compatibility must

be satisfiled:
M%M%M%FO
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The condition ([E_ ]=: 0 can be written as

[n (% + 5+ T =[5 5+ ) 0.5

(1.5
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Under the transformation (1.2) the surface of the strong discontinulty

F(t,x,y) = O becomes F (r,£,n) = O 1in terms of the new variables r,f,n,
where F, 18 such that

F({pa, e )= Fe oy

ty

Making use of the relations(1.2) and (1.3) we can easily show that condi-
tions (1.5) and (1.6) remain invarisnt under the transformation (1.2). One
can obtain this result by rewriting {(1.5) and (1.6) replacing ¢,x,y by
7,¢,n and D;U:”.':palhl' by p“u“vpvx,l’“ﬂ,,h .

The conditions of impenetrability through the solid wall, and the condi-
tion of the contacting discontinuity remain also invariant.

From what has been said, it follows that to each solution of the system
(1.4) which describes a certain motion in the fleld of action of external

?pat%nl forces there corresponds a certain solution of the system of equations
1.1).

If we determine 7 from g°f/d7°= O , we obtain the invariance of not
only the boundary conditions dut alao the invariance of the system of equa-
tions of magneto-gas-dynamics. Invariant transformations of the equations
of gas-dynamics were considered in [2 and 3]

It should also be mentioned that in the flow region there may be present
only dlielectric bodies, or bodies which have infinite conductivity. For
finite ceonductivity, the magnetic field inside the body is described by an
equation which 1s not invariant under the transformation (1.2). Hence, -such
bodies are excluded from consideration.

2. As one of the simplest examples which gives a solution of the system
of equations (1.4), we shall consider the equilibrium of a conducting circu-
lar cylinder bounded by a dielectric wall and located in a magnetic field.
The magnetic force lines are parallel to the axis of the cylinder. 8ince
the equilibrium is axially symmetric, we can reduce the system of equations
(1.4) to polar coordinates, and we may &ssume that all quantities are inde-
pendent of the angle.

Setting the velocity components equal to zero, we obtain the system of
equilibrium equations (*)

d H,? 18 ap,

ot 5) = TRt Fe =0
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The system of equations (2.1) is, in general, over-determined, but one
may, nevertheless, find particular solutions which will satisfy all the equa-
tions. We seek the solution for ¥, in the form

Hy =€ h (3.
Substituting this into the third equation of the system (2.1) we obtain
d2h 1 dh / a
——m e e —— [LJ S— 2 =t e
qm T T Tk =0 (4 o> (2.2)

This equation has a solution which 1s bounded at the origin. It 1is the
Bessel function J,(x() of imaginary argument. Thus,

Hy = ¢l (20) e%° (.3
where o, 1s an arbitray constant.

*) Equilibrium will occur for the introduced fictitious medium with the para-
meters u,, H,, pis s+-.,» While this medium, considered as a real medium, 1s
in motion, which will be determined later.
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The quantitles p, ,and p, are easily determined from the remaining equa-
tions, and they have the form

2at 20,2 3 1
P1 = Do + egn o 12 (xl), = ng 1, (x0) [—2' Iy (D) + > I, ("-Q] (2.4)

where B is an arbitrary positive constant. Hereby f(v) must satisfy Equa-
tion

@*f / d1® — Be?**f = 0
We take one of the solutions of this equation in the form

() = e5 Io (Be™) (B=VB/a (2.5)

The obtained solution describes the following "equilibrium” state of the
fictitious medium. Inside the cylinder of some radius (, there 1s a qui-
escent conducting gas whose density is distributed according to the law (2.4)
The conducting gas 1s bounded by so0lid dielectric walls. At the instant of
time T = — «» the pressure in the entire cylinder is constant and equal to
b, , the potential of the magnetic fleld 1s zero &and the spatlal external
force vanishes, then there appears a magnetic fleld in the region t>8,.
This field increases according to the law II, = ¢/, (x{;) ¢* Inside the region
§ <% the magnetic field 1s determined by Formula (2.3). Simultaneously
with the magnetic field, the external force 1s beginning to act. This force
counterbalances the gradlents of the magnetic and hydrodynamic pressure.

The hydrodynamlic pressure p,, which is determined by Formula (2.4) increases
continuously because of the heating of the gas by Joule's dissipation.

Let us now see what solution of the system of equations (1.1) will cor-
respond to the solution of (1.4).

In order to pass from the derived solution to the solution of the system
of equations (1.1), we use the relations (1.2) which for the case under con-
sideration takes on the form

t
(= fr, v=\frdn p=pe, H= P p=ipn

to

,

w==-——7-r (w? = u? + v?)

The expression for y in terms of t 18 given by Formula (2.5). The
solution can be written in the form

w = — aff ¢ ey (Be®") 1) (Be®7) 1, H = ¢ I (Be®) Iy [nealo (Be®7) 7]

2
p = cAlt (Be®) {po + % €287 113 [xcgly (Be®) r]}

2
p=—agr— To (Be™) Iy [xcly (Be™) ] (31, [eyrly Be®) + Filueslo (Be®) rl} (2.6)

The relation betweem the variables t and ¢t 1is given by dt1/at = /°
Integrating this equation we get

= _1_ KO (ﬁ) _ Ko (ﬂe‘") :l _ . 27
acy? [ I, (B) I, (Be®) @3 VB/a) 2.7

For the sake of definiteness, the constant is chosen so that to the time
t = O there corresponds ¢ = 0 ., To the value of the parameter r = — o
there corresonds the inatant of time ¢t m—o. To the value ¢ = + = there
corresponds the instant of time
1 K,

t=—5 Fo

acg® 1y (f)
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The solution of the system of equations (1.1), which 1s given by Pormulas
(2.6) and (2.7), describzs the following magneto-gas-dynamic motion.

At the instant ¢ = — » the comducting gas is at rest in a circular cylin-
der of radius r,= gy, The density of the gas 1s distriduted according
to a law which can be obtained if in the last expression of (2.6) one lets
T = — o The pressure is constant in the entire cross section and the mag~
netic fileld is absent, thén there appears in the region r > r, a magnetic
field which inecreases according to the law defined by the second expression
of (2.6) where one has to set r = %o - The megnetic fleld penetrates into
the conducting gas and sets it in motion.

The distribution of velocities is given by the first formula of (2.6)
which describes compression of the plasma cylinder. The law of motion of
the dielectric wall 1s determined by Equation

re = czly (Be®") Lo (c3 >0)
At the instant of time

~ 1 K@
b= ac? I, (B)

the entire gas converges to the origin of the coordinate system.
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